A robust method to compute the 3D symmetry line and the torsion of the human back surface: Application to scoliosis

Marion MORAND ${ }^{1,2}$, Olivier COMAS ${ }^{2}$, Christophe FIORIO ${ }^{1}$ and Gérard SUBSOL ${ }^{1}$

A robust method to compute the 3D symmetry line and the torsion of the human back surface: Application to scoliosis

Marion MORAND ${ }^{1,2}$, Olivier COMAS ${ }^{2}$, Christophe FIORIO ${ }^{1}$ and Gérard SUBSOL ${ }^{1}$

A robust method to compute the 3D symmetry line and the torsion of the human back surface: Application to scoliosis

Marion MORAND ${ }^{1,2}$, Olivier COMAS ${ }^{2}$, Christophe FIORIO ${ }^{1}$ and Gérard SUBSOL ${ }^{1}$

For diagnosis or follow-up:

- Non-irradiant optical system
- BIOMOD system based on Moiré pattern \Rightarrow 3D mesh of the back

A robust method to compute the 3D symmetry line and the torsion of the human back surface: Application to scoliosis

Marion MORAND ${ }^{1,2}$, Olivier COMAS ${ }^{2}$, Christophe FIORIO ${ }^{1}$ and Gérard SUBSOL ${ }^{1}$

For diagnosis or follow-up:

- Non-irradiant optical system
- BIOMOD system based on Moiré pattern \Rightarrow 3D mesh of the back

Objective:

- Find the 3D symmetry line
- Analyze the local torsion of the back surface

Scoliosis:

- Evolutive deformation of the spine
- Trunk asymmetry

A robust method to compute the 3D symmetry line and the torsion of the human back surface: Application to scoliosis

Marion MORAND ${ }^{1,2}$, Olivier COMAS ${ }^{2}$, Christophe FIORIO ${ }^{1}$ and Gérard SUBSOL ${ }^{1}$

OUR WORK :

- Development of a new method based on local symmetry planes

- Comparison with reference methods [1,2]

